Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Air pollution remains a critical threat to public health and environmental sustainability, yet conventional monitoring systems are often constrained by limited spatial coverage and accessibility. This paper proposes an AI-driven agent that predicts ambient air pollution levels from sky images and synthesizes realistic visualizations of pollution scenarios using generative modeling. Our approach combines statistical texture analysis with supervised learning for pollution classification, and leverages vision-language model (VLM)-guided image generation to produce interpretable representations of air quality conditions. The generated visuals simulate varying degrees of pollution, offering a foundation for user-facing interfaces that improve transparency and support informed environmental decision-making. These outputs can be seamlessly integrated into intelligent applications aimed at enhancing situational awareness and encouraging behavioral responses based on real-time forecasts. We validate our method using a dataset of urban sky images and demonstrate its effectiveness in both pollution level estimation and semantically consistent visual synthesis. The system design further incorporates human-centered user experience principles to ensure accessibility, clarity, and public engagement in air quality forecasting. To support scalable and energy efficient deployment, future iterations will incorporate a green CNN architecture enhanced with FPGA-based incremental learning, enabling real-time inference on edge platforms.more » « lessFree, publicly-accessible full text available October 19, 2026
-
The rising computational and energy demands of deep learning, particularly in large-scale architectures such as foundation models and large language models (LLMs), pose significant challenges to sustainability. Traditional gradient-based training methods are inefficient, requiring numerous iterative updates and high power consumption. To address these limitations, we propose a hybrid framework that combines hierarchical decomposition with FPGA-based direct equation solving and incremental learning. Our method divides the neural network into two functional tiers: lower layers are optimized via single-step equation solving on FPGAs for efficient and parallelizable feature extraction, while higher layers employ adaptive incremental learning to support continual updates without full retraining. Building upon this foundation, we introduce the Compound LLM framework, which explicitly deploys LLM modules across both hierarchy levels. The lower-level LLM handles reusable representation learning with minimal energy overhead, while the upper-level LLM performs adaptive decision making through energy-aware updates. This integrated design enhances scalability, reduces redundant computation, and aligns with the principles of sustainable AI. Theoretical analysis and architectural insights demonstrate that our method reduces computational costs significantly while preserving high model performance, making it well-suited for edge deployment and real-time adaptation in energy-constrained environments.more » « lessFree, publicly-accessible full text available June 30, 2026
-
SimPart: A Simple Yet Effective Replication-Aided Partitioning Algorithm for Logic Simulation on GPUFree, publicly-accessible full text available August 22, 2026
-
Different from traditional tedious CPU-GPU-based training algorithms using gradient descent methods, the software-FPGA co-designed learning algorithm is created to quickly solve a system of linear equations to directly calculate optimal values of hyperparameters of the green granular neural network (GGNN). To reduce both CO2 emissions and energy consumption effectively, a novel green granular convolutional neural network (GGCNN) is developed by using a new classifier that uses GGNNs as building blocks with new fast software-FPGA co-designed learning. Initial simulation results indicate that the FPGA equation solver code runs faster than the Python equation solver code. Therefore, implementing the GGCNN with software-FPGA co-designed learning is feasible. In the future, The GGCNN will be evaluated by comparing with a convolutional neural network with the traditional software-CPU-GPU-based learning in terms of speeds, model sizes, accuracy, CO2 emissions and energy consumption by using popular datasets. New algorithms will be created to divide the inputs to different input groups for building different GGNNs to solve the curse of dimensionality.more » « less
-
A novel green granular neural network (GGNN) with new fast software-FPGA co-designed learning is developed to reduce both CO2 emissions and energy consumption more effectively than popular neural networks with the traditional software-CPU-GPU-based learning. Different from traditional tedious CPU-GPU-based training algorithms using gradient descent methods and other methods such as genetic algorithms , the software-FPGA co-designed training algorithm may quickly solve a system of linear equations to directly calculate optimal values of hyperparameters of the GGNN. Initial simulation results indicates that the FPGA equation solver code ran faster than the Python equation solver code. Therefore, implementing the GGNN with software-FPGA co-designed learning is feasible. In addition, the shallow high-speed GGNN is explainable because it can generate interpretable granular If-Then rules. In the future, The GGNN will be evaluated by comparing with other machine learning models with traditional software-based learning in terms of speeds, model sizes, accuracy, CO2 emissions and energy consumption by using popular datasets. New algorithms will be created to divide the inputs to different input groups that will be used to build different small-size GGNNs to solve the curse of dimensionality. Additionally, the explainable green granular convolutional neural network will be developed by using the GGNNs as basic building blocks to efficiently solve image recognition problems.more » « less
-
Anandkumar, Animashree (Ed.)Recommender systems have been extensively used by the entertainment industry, business marketing and the biomedical industry. In addition to its capacity of providing preference-based recommendations as an unsupervised learning methodology, it has been also proven useful in sales forecasting, product introduction and other production related businesses. Since some consumers and companies need a recommendation or prediction for future budget, labor and supply chain coordination, dynamic recommender systems for precise forecasting have become extremely necessary. In this article, we propose a new recommendation method, namely the dynamic tensor recommender system (DTRS), which aims particularly at forecasting future recommendation. The proposed method utilizes a tensor-valued function of time to integrate time and contextual information, and creates a time-varying coefficient model for temporal tensor factorization through a polynomial spline approximation. Major advantages of the proposed method include competitive future recommendation predictions and effective prediction interval estimations. In theory, we establish the convergence rate of the proposed tensor factorization and asymptotic normality of the spline coefficient estimator. The proposed method is applied to simulations, IRI marketing data and Last.fm data. Numerical studies demonstrate that the proposed method outperforms existing methods in terms of future time forecasting.more » « less
-
null (Ed.)This article provides an overview of tensors, their properties, and their applications in statistics. Tensors, also known as multidimensional arrays, are generalizations of matrices to higher orders and are useful data representation architectures. We first review basic tensor concepts and decompositions, and then we elaborate traditional and recent applications of tensors in the fields of recommender systems and imaging analysis. We also illustrate tensors for network data and explore the relations among interacting units in a complex network system. Some canonical tensor computational algorithms and available software libraries are provided for various tensor decompositions. Future research directions, including tensors in deep learning, are also discussed.more » « less
-
Abstract Lychee is an exotic tropical fruit with a distinct flavor. The genome of cultivar ‘Feizixiao’ was assembled into 15 pseudochromosomes, totaling ~470 Mb. High heterozygosity (2.27%) resulted in two complete haplotypic assemblies. A total of 13,517 allelic genes (42.4%) were differentially expressed in diverse tissues. Analyses of 72 resequenced lychee accessions revealed two independent domestication events. The extremely early maturing cultivars preferentially aligned to one haplotype were domesticated from a wild population in Yunnan, whereas the late-maturing cultivars that mapped mostly to the second haplotype were domesticated independently from a wild population in Hainan. Early maturing cultivars were probably developed in Guangdong via hybridization between extremely early maturing cultivar and late-maturing cultivar individuals. Variable deletions of a 3.7 kb region encompassed by a pair ofCONSTANS-like genes probably regulate fruit maturation differences among lychee cultivars. These genomic resources provide insights into the natural history of lychee domestication and will accelerate the improvement of lychee and related crops.more » « less
An official website of the United States government

Full Text Available